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Preface

Celestial mechanics problems have motivated the development of both pure and

applied mathematics since Newton's development of calculus. In fact, Newton used his

calculus to formulate Kepler's laws of planetary motion and to show that a point mass

may approximate a spherically symmetric body when considering gravitational attraction.

Since then, generations of mathematicians have endeavored to improve the accuracy of

the equations for planetary motion. In doing so, analytical methods, approximations,

and gimmiks were formulated, greatly influencing instruction in mathematics. Although

these nineteenth century mathematicians could have used the brute force method of literal

numerical calculation, without the aid of modem-day computers the task would span

lifetimes. Instead, particular tricks found useful in solving Kepler's laws were regarded as

significant and subsequently added to the mathematician's box of tools. In retrospect it can

be seen that the precomputer emphasis on analytical solutions was not entirely beneficial;

many of these methods continue to be taught as an established mathematical means to

an end, despite an era of sophisticated computers where approximate methods have little

relevance (12:421,432), (6:85). On the other hand, analytical methods and their series-

and closed-form solutions yield insight into the physical effects of specific parameters and

the relative strengths of various physical mechanisms. Only the most successful numerical

computations provide physical insight.

This thesis explores the implications of a set of mathematical tricks employed for

centuries by those investigating celestial mechanics. It appears that this is one instance in

which an analytical method produced a satisfactory and meaningful result in the past but

may have also hidden the existence of a great number of alternative solutions. However, the

spurious nature of these numerical results indicates that we must not completely abandon

our centuries-old mathematical tricks. The emergence of supercomputers has seemingly

produced answers in minutes rather than lifetimes, but only slightly diminishes our reliance

on mathematical approximations and analytical methods.

Cynthia Ann Provost
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Abstract

Numerous studies have been conducted on equilibrium orientations of objects moving

under the influence of a central gravitational field. The objects under investigation have

had configurations ranging from spheres to cylinders to more complicated three-axis stabi-

lized satellites. The results of many of these studies conclude that equilibrium conditions

exist only when one of the principal axes coincides with the radius vector. Furthermore,

these results assume that the center of force is located within the orbit plane, thereby trac-

ing a great circle orbit. While these previous works have approximated the gravitational

potential, this study examines relative equilibria obtained by retaining an exact expression

for the potential of a spherical primary body, as shown in a recent paper by Wang, Mad-

docks, and Krishnaprasad. The exact dynamic equations for the motion of a finite rigid

body in an inverse square gravitational force field are investigated. Only circular orbits for

a specific satellite model consisting of six masses connected by three massless rigid rods are

considered. The system dynamics are comprised of seven nonlinear equations, which were

numerically solved on a Cray computer. The existence of equilibrium orientations which

establish non-great circle orbits was verified and other interesting results were noted. The

operational significance of these results was also examined.

Viii



STEADY MOTIONS OF RIGID BODY SATELLITES

IN A CENTRAL GRAVITATIONAL FIELD

L Introduction

1.1 Background

The study of motions due to an inverse square gravitational potential field has been

explored for several centuries. Orbiting bodies investigated include point masses, spheres,

cylinders, rods, ball-and-socket connected objects, and more complicated bodies with mov-

ing appendages and momentum wheels. Until recently, many of these studies have utilized

approximate solutions to the equations of motion obtained with a spherical primary body.

Typically the gravitational force and moment acting on the body of interest has been

approximated with a binomial series expansion and the center of force is assumed to be

located within the orbit plane. Using these approximations generally leads to a result

in which equilibrium conditions exist only when one of the principal axes coincides with

the radius vector. This type of orientation is known as a gravity-gradient attitude. The

trajectory for these types of satellites is a great circle orbit.

A gravity-gradient-stabilized satellite utilizes the gravitational force of a massive

primary body for stability. The gravitational torques tend to align the axis of minimum

moment of inertia with the radius vector from the center of mass of the satellite to the

center of mass of the primary body. Use of this stability method requires that the satellite

have specific mass and inertia properties. The most common feature of many gravity-

gradient stabilized satellites is the presence of long booms. Some sketches of several of

these types of spacecraft are depicted in Figure 1.

A great circle orbit is one in which the radius vector from the center of mass of the

primary body to the center of mass of the orbiting body traces out a disk. This type

of orbit is depicted in Figure 2. Conversely, the radius vector of a non-great circle orbit

traces out a cone, as seen in Figure 3. In other words, "the center of relative equilibrium

I



ATS-A GGTS

MAGS NRL-164

Figure 1. Sketches of Gravity-Gradient Satellites: Applications Technology Satellite-A
(ATS-A) (24), Gravity-Gradient Test Satellite (GGTS) (24), Magnetically An-
chored Gravity System (MAGS) (24), and the Naval Research Laboratory -
164 (NRL-164)(5).

2



rotation does not coincide with the center of the force field (41)." For a great circle orbit,

it is obvious that the radius vector, X, must be perpendicular to the angular velocity

vector, d, or X .0 = 0. Further analysis reveals that both d and X must be aligned with

principal axes. However, this restriction is not present in non-great circle orbits. In fact,

it has been shown that although the offset from a great circle orbit is very small in certain

circumstances, the attitude change associated with that offset can be quite significant (42).

In a recent paper by Wang, Maddocks, and Krishnaprasad (42) the concept of non-

great circle orbits was explored. In their study, the Hamiltonian form of the exact dynamic

equations for the motion of a finite rigid body in an inverse square gravitational force

field was examined. The equations were found to have a noncanonical structure with

the gravitational potential as one term. While previous works have approximated the

gravitational potential, the Wang paper explores relative equilibria obtained by retaining

an exact expression for the potential of a spherical primary body. The results of the

Wang investigation were promising, yet not definitive. Using continuation techniques,

nume' ,s non-great circle orientations were discovered for an ideal, hypothetical structure

consisting of 6 mass particles. Seven nonlinear algebraic equations were solved by successive

application of Newton-Raphson iterations. However, several discontinuities in their results

indicated potential bifurcation and limit points, implying the existence of distinct branches

of equilibria. Additionally, the operational significance and feasibility of non-great circle

orbit applications was not addressed. Furthermore, their results were based on a model

which may not realistically represent a useful satellite in orbit.

If these additional questions were addressed, the results could have far-reaching ef-

fects on the design of earth-orbiting satellites. Different dynamical systems could then be

analyzed with the exact potential, yielding previously unknown equilibrium orientations.

Modifications to control systems which take into account newly-found stable orientations

might achieve better performance and reduce consumption of on-orbit propellants used

for station-keeping and attitude adjustment. Perhaps complex orbital missions could be

achieved with less complex satellite configurations. Clearly, the results of (42) exhibit po-

tential for future satellite design. However, further investigation is required to more closely

examine the anomalies and significance of (42).

3
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Figure 2. A Great Circle Orbit.

Ia

Figure 3. A Non-Great Circle Orbit.
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1.2 Problem Definition

This investigation attempted to validate the findings of (42) and explore in greater

detail the discontinuities present in their results. A computer program different from that

used in (42), AUTO86 (4), was used to independently determine the existence of non-

great circle relative equilibria for the six-particle model. AUTO86, referred to as AUTO

for the remainder of this paper, is a continuation/bifurcation package, and its use was

intended to facilitate the discovery of bifurcation points and successfully trace out branches

of relative equilibria. AUTO was chosen because of recommendations from other users,

the existence of several references and theses which utilized AUTO, and the software's

availability. An objective examination of the operational utility of these relative equilibria

was also conducted.

1.3 Scope

Although the original intent was to examine in further depth all the results obtained

in (42), as well as utilize a more realistic satellite model, extensive difficulties in achieving

valid and economically attainable results led to a restriction in scope. Consequently, this

study is limited to the analysis of the exact six-particle molecule model used in (42).

As described earlier, only relative equilibria for the molecule's motion due to an inverse-

square gravitational field were sought. In the continuation method, only one parameter

was varied in order to keep the Jacobian symmetric, thereby eliminating the need for a

double precision eigenvalue solver and simplifying computations.

1.4 Assumptions

The dynamical system examined was assumed to have a circular orbit where the

center of attraction may or may not be the center of the orbit. A restricted two-body

approach was used by assuming the primary body is stationary. The solution obtained

with the earth as a spherically symmetrical finite rigid body is identical to the solution

obtained by treating it as a point mass. Thus, the earth was modelled here as a point mass.

Consequently, harmonics associated with the oblateness of the earth are not considered.

Although the very small size of the satellite model relative to its orbit radius could lead to

5



its treatment as a point mass, doing so would prevent analysis of satellite attitude. Thus

the non-great circle relative equilibria of interest here were investigated by considering the

finite extent of the orbiting rigid body.

1.5 Method

The dynamical equations were numerically analyzed on a computer, modelling the

rigid body satellite as a simple molecular structure with unequal moments of inertia. First,

the equations were coded and validated in double precision on a Sun SparcStation. Values

of the function and the Jacobian were verified using the results of the program used in (42).

The code was then incorporated into AUTO subroutines and tested for proper integration

within the software. Subroutines were added to compute the necessary variables for accu-

racy testing. Insufficient accuracy was obtained using the Sun workstation, therefore the

code was transferred to the Ohio Supercomputer Cray where double precision accuracy to

29 digits was possible (29). Initial equilibrium points were obtained from values depicted

in Table 2 of (42). The AUTO code was run numerous times with different values for

stepsizes, iterations, and tolerances to achieve results with sufficient accuracy. Hundreds

of combinations were used in an intensive search for valid results. Apparent numerical

instabilities caused several problems in obtaining data and excessive computer processing

time. Several attempts at scaling and other modifications to AUTO were made to improve

computer efficiency and accuracy. When this was accomplished, the results were compared

to those found in (42). While the results of this project were not as conclusive as had been

anticipated, some results of (42) were verified.

1.6 Overview

Following this introduction is a literature review which gives a synopsis of signifi-

cant studies on relative equilibria of bodies moving under a gravitational field. Next, a

development of the gravity-gradient orientation concept is presented in Chapter III. Corre-

spondingly, a development of the theory on which this study is based is described. Chapter

IV outlines the solution approach while in Chapter V the numerical results are analyzed

and interpreted. Conclusions regarding the significance and operational applicability of

6



the concepts are contained in Chapter VI. Finally, recommendations for further study are

provided.
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II. Literature Review

In classical rigid-body dynamics, relative equilibria, a term attributed to Poincar6,

are stationary rotations about the principal axes of inertia (36), (41). Although the subject

of this report is relative equilibria of rigid body satellites, the concept parallels so closely

with gravity-gradient satellites that a literature review of the latter serves as an excellent

background for the former. Thus, this chapter primarily focusses on research, operations,

and ideas pertaining to gravity-gradient torques and stabilization.

2.1 Gravitational Effects

According to Griffin, "planetary gravitational fields decrease with distance R from

the center of the planet according to the Newtonian 11R2 law," assuming higher order

harmonics are neglected (6:293). Only the mass center of the spacecraft is in a true

gravitationally-derived orbit. This explains why an orbiting object experiences a stronger

attraction on its "lower" side than its "upper side." A spacecraft mass particle closer to the

earth would move ahead of a mass particle farther away from earth's center if in a free orbit.

If this differential force is applied to a body with unequal principal moments of inertia, a

resulting torque tends to rotate the object, vertically aligning its minimum inertia or longest

axis. Alternatively stated, "perturbations from the equilibrium produce a restoring torque

toward the stable vertical position, causing a periodic oscillatory or 'librational' motion

... and internal elastic forces in the structure balance the orbital dynamic accelerations

tending to separate masses orbiting at different altitudes (6:64-65,293)."

Several authors describe gravity-gradient torque in a similar manner. Satellites with

unequal principal moments of inertia have torques acting upon them due to the gradient of

the earth's gravitationr1 ij le. According to (39), "these torques tend to align the axis of

least moment of inertia with the local vertical. Therefore, in principle, the gravity-gradient

torques can be used as the basis of a aeilization system for an earth-pointing satellite."

Thomson states that "gravity torque tends to align the axis of minimum moment of inertia

of a non-spinning body with the radius vector drawn from the center of Earth (38)." More

specific descriptions of the vehicle orientation can be found in (41): "the angular velocity

8



lies along the principal axis of the body with the largest associated moment of inertia

(minor axis of the ellipsoid of inertia), and the radius vector is aligned to the principal axis

with the least associated moment of inertia (major axis of the ellipsoid of inertia)," and

(17): "maintaining a fixed orientation with respect to a rotating reference frame established

by the binormal, tangent, and principal normal of the orbital path."

The effects of gravity-gradient torques can be significant, depending on the distance

from the center of the gravitational field and the shape of the orbiting body. For large

vehicles such as a space station or space shuttle the magnitude may be 10-Sg's or more

(6:64). According to (47), when considering gravitational, magnetic, solar radiation, aero-

dynamic, and cosmic dust disturbances, gravity-gradient torques are the most dominant

torque over a large range of altitudes. Furthermore, the spacecraft yaw angle does not

influence the gravity-gradient torque, since yaw represents rotation around the local verti-

cal. The torque magnitude depends on the difference between principal moments of inertia.

Therefore, cylindrical spacecraft are more affected than disk-shaped spacecraft (6:294).

2.2 Other Spacecraft Torques

To put the gravity-gradient concept into perspective, a brief discussion of a satellite's

surrounding space environment is in order. The review will be limited to a description of

various torques which affect bodies orbiting the earth.

A space vehicle orbiting the earth, or any other gravitational body, is subject to

a number of disturbance torques. Although some have postulated that the gravitational

gradient torque is the only external torque on the body (17), there are others. Torques

due to aerodynamic loads, magnetic fields, solar wind and radiation, particle impingement,

outgassing, and internal moving parts also affect a space vehicle.

Aerodynamic torque arises from the separation between the mass center and aero-

dynamic center of pressure (6:292). Momentum is transferred from atmospheric molecules

to the surface of the space vehicle (13:250). This torque is also referred to as atmospheric

resistance (30).

9



Magnetic torque affects the space vehicle while under the influence of the earth's

magnetic field. Comparable to the alignment of a compass needle with the local magnetic

field, components aboard the spacecraft which contribute to the vehicle's magnetic moment

may similarly cause alignment with the earth's magnetic field. Consequently, careful rela-

tive orientation of current loops, magnets, and electronics is required by system designers

to ensure the total magnetic moment of the vehicle is zero (6:295), (13:265).

Solar radiation pressure torque also contributes to the overall motion of a spacecraft.

This torque, sometimes attributed to the solar wind (31:83), is independent of velocity or

position while the spacecraft remains in sunlight, and acts perpendicular to the sun line

(6:295). At altitudes above 1000 kin, the space vehicle disturbance torque environment is

usually dominated by solar radiation pressure (6:294). According to (49), solar radiation

produces a transverse thermal gradient in deployed booms, causing them to bend away

from the sun. The bending affects satellites by moving both the center of mass and the

center of solar pressure, and changing the inertia dyadic which produces a change in gravity

restoring-torque as well as dynamic effects due to rigidity.

Torques may also be caused by passage through meteor showers or a collision with

debris. The impact of a meteoroid would impart a short impulse to the spacecraft (31:83).

Additionally, the spacecraft itself is the cause of several disturbance torques. Deliberate

or accidental effluent venting and internal torques resulting from a momentum exchange

also cause disturbances. The internal torques m %y arise from the motion of antennas, solar

arrays, instruments, scanners, deployable booms, and other appendages (6:296). Those

appendages in turn would be subject to linear acceleration, centrifugal force, and Coriolis

force (30).

A graphical representation of some of these torques can be found in Figure 4, which

originated in (47) and was modified in (13:271). The figure presents a useful comparison

of the magnitudes of some disturbance torques as a function of altitude. The torques

are linear in the parameter shown, with the gravity-gradient linear limit being about 150.

Thus, the gravity- gradient torque for 0 = 5° may be obtained by taking the appropriate

value from Figure 4 and multiplying by 5, where 0 indicates the offset angle from the

vertical.

10
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L.3 Stability

According to (24), the first published concept outlining a passive gravity-gradient

control system is believed to exist in a U.S. patent issued to R.E. Roberson and J.V.

Breakwell in 1956. This patent was only the first in a long line of technical reports con-

cerning gravity-gradient stabilization systems. One aspect of gravity-gradient stabilization,

and passive attitude control in general, is that it "takes advantage of basic physical princi-

ples and naturally occurring forces by designing the spacecraft so as to enhance the effect

of one force while reducing others (6:297)." Dependable spacecraft stabilization permits

electronic and optical tracking system performance to be optimized using more efficient

antenna design and optimal orientation of onboard light sources or reflectors (18). In (1),

the author reduces the problem of gravity-gradient stabilization to four major areas: 1)

the reduction of tumbling 2) the extension of a boom or booms to achieve a large ratio of

pitch- and roll-axis to yaw-axis moment of inertia 3) the damping of satellite librations to

tolerable oscillations, and 4) controlling the satellite's boom position. Numerous authors

have addressed these problems; several are described in this section.

In (19), the energy equation is used to determine the stability extrema of asymmetric

satellites. Concurring with several other works, the author states that almost all satellites

have a stable orientation. In particular, he addresses six dynamically distinct sets of

equilibria, one of which is stable for any asymmetric rigid object in a circular orbit.

The problem of relative equilibria for gyrostats in a circular orbit is investigated

by (48). In his paper, the author discusses a satellite composed of an arbitrary number

of gyrostats interconnected by ball-and-socket joints. A gyrostat is a stabilizing device

consisting of a small axisymmetric rotor, or momentum wheel, spinning about its axis of

symmetry inside a platform. The rotor's spin does not affect the mass distribution and

the inertia tensor of the gyrostat remains constant if the rotor and the platform are rigid

bodies. A gyrostat is also referred to as a dual-spin satellite (31:264). First and second

variations of the dynamic potential energy are used in (48) to obtain relative equilibrium

positions and stability criteria.

12



The unpredictability of the direction of the pointing axis is described in (43). The

author states: "All gravity-gradient stabilized satellites have a stable orientation which is

either right side up or upside down. If after deployment the attitude and angular velocity

are sufficient to cause tumbling, the final orientation may be upside down." The energy

approach is used to predict capture or tumbling, thus indicating whether a turnover device

is required (43).

The lack of inherent yaw stability present with gravity-gradient attitude control is

briefly discussed in (6:300). Such a spacecraft is unconstrained and may rotate about its

vertical axis. Consequently, large amplitude librations are sometimes observed which may

be sufficient to invert the spacecraft. This anomalous behavior has been associated with

the long-period resonances in the gravity-gradient boom when excited by thermal input,

as described in (5) and (28:16).

In (38), the author discusses the potential stabilization of a particular type of space-

craft through the use of spin. The particular vehicle configuration, with its symmetric axis

normal to the orbit plane, is apparently unstable when 12 < I,. I, and 12 are the moments

of inertia along the transverse and symmetric axes respectively. According to (38), the

amount of spin required to stabilize the spacecraft depends on the angular velocity of the

orbit radius and the ratio 12/11.

Presenting a general approach to the "rigorous nonlinear stability analysis of rela-

tive equilibria in Hamiltonian systems" was the author's intent in (36). In this paper, the

author applied the reduced energy-momentum method to acquire an explicit and easily im-

plementable criterion for nonlinear stability of relative equilibria. His method involves only

the configuration variables and does not introduce Lagrange multipliers. The method also

does not require explicit knowledge of momenta ard momenta variations or the conserved

quantities in the reduced space, also known as Casimirs (36).

Several other authors have examined the design of gravity-gradient stabilized space-

craft. Specifically, in (13:281-346), an excellent presentation on torques, stability, design

and flight experience pertaining to gravitational forces is found. The stability conditions

obtained through variational methods is the also the subject of (41). Additionally, the

13



effect of a variable gravitational force acting on a rod satellite is presented in (31:83).

Three types of gravity-gradient stabilization configurations - traac, magnetic anchor, and

hinged multibody - are discussed in (9).

While the gravitational torques present in orbit can provide a useful stabilizing force,

additional measures are sometimes required to put the spacecraft in a proper gravity-

gradient orientation from its deployment attitude, and also to minimize the naturally

occurring libration. Although it is often required to position a satellite in orbit oriented in

a specified direction, maintaining the specified attitude may be impeded due to perturbing

torques (38). In (23), several methods for this type of stabilization are described. Magnetic

stabilization can be used to assist the space vehicle in assuming its desired gravity-gradient

attitude. The same can be accomplished using the previously mentioned boom deployment.

Other methods include magnetic hysteresis rods, a damping spring with magnetic hysteresis

rods, and magnetic hysteresis plus eddy-current damping.

In (39), "a passive three-axis stabilization system is described which relies solely on

the gravity-gradient to provide both the damping and the restoring torques for a vertically-

oriented satellite." Damping occurs through the energy dissipation of relative motion

existing between the main spacecraft vehicle and an auxiliary body.

Exploring allowable attitude deviations due to given disturbances was the intent of

the author in (19). This information is of particular use to spacecraft design engineers who

assess long term attitude performance of satellites.

2.4 Advantages of Gravity-Gradient Stabilization

There are several advantages to utilizing the naturally occurring gravitational torque

in the design of spacecraft. A gravity-gradient stabilized spacecraft will maintain a stable

orientation relative to the earth, without decaying or drifting due to other environmental

torques. This assumes a stable environment (45:19). Gravity-gradient stabilization is one

of several passive methods of stabilization. Passive methods require no spacecraft power

consumption or ground-directed commands (45:19). With a position-controlled satellite,

mission requirements may be met with a minimum of on-orbit satellites and the least

14



extensive and expensive system of ground stations (10). Another advantage of passive

attitude control is the potential for very long satellite lifetimes. The operational life is

not limited by onboard consummables or wear and tear on moving parts (6:297). Gravity-

gradient stabilization is useful when long orbit lifetimes are needed and the attitude sta-

bility requirements are relatively broad (6:300). The operational utility of these satellites

is explored further in Section 2.8.

2.5 Disadvantages of Gravity-Gradient Stabilization

While gravity-gradient stabilization does have its advantages, the method is not

without some detrimental characteristics. The attitude of such a satellite is limited to only

one or two possible orientations - the minimum inertia axis pointing toward or away from

the center of the gravity field. This method is only effective near a massive central body,

limiting its utility and preventing its application to certain planetary probes. Only specific

satellite configurations permit the use of this stabilization method, since it requires the

use of long booms or an elongated mass distribution. A gravity-gradient satellite is also

subject to wobble or libration (45:19). Libration amplitudes of 10-200 are not uncommon

(6:300). Furthermore, attitude control is limited to about 10. Thermal gradients may easily

develop across the length of the satellite or its deployable booms, contributing to both the

libration and a decrease in attitude control (45:19). This problem is most likely related to

the "unpredictable low frequency instability associated with solar radiation" addressed in

(5). In one author's opinion, gravity-gradient stabilization is too imprecise and inflexible

for most applications due to its poor overall accuracy and somewhat inflexible response to

changing environmental conditions (6:300).

2.6 Equilibrium Orientations

It is at this point that the literature review becomes specifically pertinent to this par-

ticular study. Given the existence of relative equilibrium orientations, one would naturally

speculate exactly how many equilibrium attitudes are produced by gravitational effects.

Although no articles professing the existence of less than 24 equilibrium attitudes were

located, several papers declared the existence of 24 or more equilibrium attitudes. The
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reports described in this section all discuss whether or not gravitational effects produce

exactly 24 or at least 24 equilibrium attitudes. This report and (42) appear to resume the

debate.

According to (17), Lagrange was apparently the first to deduce from the relevant

equations of motion the existence of 24 equilibrium attitudes. In these attitudes the body

principal axes are aligned with the orbiting reference frame. He also investigated satellite

librational motions and formulated stability conditions corresponding to the linearized

dynamical equations. A similar result is obtained in (19) where the author claims that "a

rigid body without an axis of symmetry, in a circular orbit, possesses 24 equilibria... which

may be classified into six dynamically distinct groups each containing four elements."

The author of (17) continues by stating, "Most investigators appear to take for

granted the uniqueness of the 24 classical equilibrium orientations. A contrary result,

however, is claimed by a more recent paper ... (22) ... specifically, the existence of an

infinite number of attitudes in which an arbitrary satellite can remain fixed in the orbiting

frame." The work in (22) was refuted in (14) and again in (17) by the same author. Another

paper, (33), considers a similar satellite and claims that "for a solid body with unequal

moments of inertia moving in a circular orbit, there are no equilibrium positions other than

those corresponding to the coincidence of the three principal central axes of inertia of the

body with the axes of the orbital coordinate system." His solutions correspond to different

cases for coincidence of the principal inertia axes of the body with the orbital coordinate

system axes. The author then states that "this result demonstrates that the findings of

Michelson [(22)] are not correct."

In their second attempt at describing the uniqueness of 24 equilibrium orientations,

the authors of (14) and (17) derive equations for the attitude motion of a rigid body

satellite in a circular orbit about a spherically symmetric earth. Additionally, the authors

investigate the existence of equilibrium orientations in which the body maintains a fixed

orientation with respect to an orbiting frame of reference, orientations corresponding to

gravity-gradient stabilization positions (21). Intending to satisfy even the most cynical

non-believers they reported on a mathematical development of the problem which reduces
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to two eigenvalue problems with exactly 24 solutions. Clearly, not all were convinced, as

can be seen in (40), (41), and (42).

As is described in this paper, the authors of (40), (41), and (42) examined the equa-

tions of motion pertaining to a rigid body of finite extent moving in a central gravitational

field. These studies were intended to investigate the approximations inherent in models

of a moving point mass. The authors questioned the common practice of retaining only

the lowest-order, nonvanishing term of the gravitational potential. While non-great circle

motions were shown to be impossible in the point mass model, relative equilibria were ob-

tained through careful consideration of the exact gravitational potential acting on a finite

body. The results of these papers decidedly conflict with those of (14), (33), and (17) and

apparently may lend credence to the work in (22).

2.7 Urnique Ideas

While a coauthor of (17) did adhere to the notion of only 24 equilibrium attitudes,

he also recognized the possibility of what is referred to in (42) as "non-great circle orbits."

He admits that the true orbit plane may be displaced from the nomiial urbit plane such

that the true orbit plane does not contain the gravitating center (32). He elaborates:

A point mass in an inverse square gravitational field can move in a circular orbit
whose plane contains the gravitating center. In fact, the gravitating center must
lie in the plane of the orbit, whatever conic the latter may be, because there
is no force mechanism to generate or sustain any out-of-plane motion. On the
other hand, a real material body is not a point mass and the gravitational force
on such a distributed body depends on the orientation of the body about its
center of mass. It is quite possible for the orbiting body to experience a force
which is not collinear with the line from the attracting center to the center of
mass of the body. (32)

As in (42), this author indirectly examined the effects of approximations of the gravitational

potential and the different results obtained using finite body rather than point mass models.

Finally, one other work may have served as a precursor to the formulation of more

exact equations of motion for a rigid body in a gravitational field. In (21), the effect of

higher-order inertia integrals is investigated:
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Under the assumption that the body dimensions are small relative to the radial
distance from the center of force, terms in the third- and higher-order inertial
integrals are ignored. However for a body with all three moments of inertia
equal second-order terms in the gravitational torques are zero ... An analy-
sis including the higher order inertia integrals shows that the attitude of an
earth-pointing satellite with three equal moments of inertia may be rendered
stable by the differential-gravity effects, provided the satellite is not spherically
symmetric and no torques from other sources exist. (21)

Using the Liapounov direct method an expression for the gravitational potential was de-

rived which included inertia integral terms through the fourth-order. His analysis showed

that approximating the gravitational potential with only second-order inertia integrals is

not always adequate. This would be particularly true when the three moments of inertia

are equal or nearly equal (21).

2.8 Operations

Utilization of gravity-gradient stabilization has been documented in numerous articles

and demonstrated in many fully-functioning satellites as well. This section describes a few

examples.

In June 1963 the first orbiting vehicle to successfully achieve passive gravity-gradient

attitude stabilization was launched. The space vehicle, designated 1963-22A or TRANSIT,

was followed by 1963-38B, 1963-49B, and 1964-26A (23). These five spacecraft, designed

by the Applied Physics Laboratory at The Johns Hopkins University, were instrumental

in establishing the effectiveness of gravity-gradient stabilization. Although one began

tumbling and stabilized upside down, improvements were made and lessons were learned.

Stabilization problems were corrected on subsequent missions with the use of magnets,

while thermal bending of the 100-foot booms was minimized by the use of an alternative

material which was less absorptive. Using the silver-plated booms, the 12" amplitude of

the high-frequency, dynamic boom bending was decreased to less than 0.25* (23).

The subject of booms arises frequently in the literature. In (5), it is postulated that

the clever use of tip-weighted extendable booms on a spacecraft could provide three-axis

passive stabilization, and thus a potentially desirable earth-pointing equilibrium attitude.

Gravity-gradient stabilization achieved with dumbbell or boom configurations is also dis-
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cussed in (31:83). The gravity-gradient loading on the long booms, exhibited during the

boom-bending observed on mission 1963-22A, are mentioned also in (31:59). The torques

on the booms cause the spacecraft to assume a radial attitude. In (6:299), the author

explains that a typical method of obtaining the desired inertia properties for a spacecraft

is to deploy a "motor-driven boom with a relatively heavy end mass." This can be accom-

plished by unrolling a reel of "prestressed metallic tape - like a carpenter's measuring

tape" that forms a cylinder with significant lateral stiffness but minimal torsional rigid-

ity (6:299). This particular type of boom is discussed in detail in (30). Since satellites

equipped with long rigid booms cannot be deployed from the fairing of a rocket nose cone,

the appendages must be extendable and retractable (31:83). One solution to this problem

is the STEM - a storable tubular extendable member (30). A STEM is a strip of fiat, thin

material which forms a very strong tubular shape when extended. Coiled on a drum when

stored, the STEM can provide a significant restoring torque as a gravity-gradient stabilizer

(30).

Gravity-gradient stabilized satellites are useful for situations in which a particular

instrument is designed to point in the zenith or nadir direction. This typically involves

a specific inertia configuration in which the vehicle possesses an axis where I. <1< I,, ,y

(6:299). For example, the TRANSIT radio navigation satellite system's main requirement

was a nadir-pointed antenna. These satellites exhibited 15-year lifetimes (6:297), (23).

Although the Naval Research Laboratory (NRL) originally designed satellites to achieve

pointing accuracy of +100 (1), more recent techniques have permitted accuracies on the

order of 1-30 (6:309). GEOSAT, a US Navy radar altimetry satellite launched in 1984,

achieved vertical stability to within 10 using an extremely stiff boom with an eddy current

damper as its top mass (6:300). The use of gravity-gradient stabilization on lenticular

communications satellites is presented in (11).

Even if a satellite is not designed to employ the stabilizing effects of gravity-gradient

torques, its effect on operations must still be considered. For some applications, gravity-

gradient effects may not be of significance. However, certain industrial manufacturing

and materials-processing operations are best conducted in low gravity conditions. These
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activities would need to take place near the center of mass or at a higher altitude where

gravitational effects are diminished (6:64-65).

To summarize, volumes of material have been written on the subject of gravity-

gradient stabilization and relative equilibria of rigid bodies in a central gravitational field.

This chapter has provided a small sampling of some of the available, and possibly more

interesting, results achieved in the last three decades. Three particularly useful sources are

(13), (28), and (24). For further review, the reader is directed to the bibliographies found

in the above references.
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III. System Dynamics

3 . Introduction

First, a development of the familiar gravity-gradient concept will be given, making

special note of the approximations made in obtaining a result. Next an explanation of how

this investigation differs from the typical gravity-gradient development will follow. Finally,

the specific dynamical equations of interest to this study will be summarized.

3.2 Gravity-Gradient Development

Consider a rigid body, B, orbiting a large mass, B,, as shown in Figure 5. The

gravitational attraction force experienced by each particle of the orbiting rigid body is

S + -'GM R+ (1)

where (A + -)/If, + PI is the unit vector in the direction from the center of the large body

to the arbitrary mass particle, G is the universal gravitational constant, M is the mass of

the large attracting body, I is the vector from the center of mass of the attracting body

to the center of mass of the orbiting body, and r is the vector from the center of mass of

the orbiting body to each individual mass particle (8). Simplifying and integrating over

the entire body to obtain the total gravitational force imparted onto the orbiting body we

see that

-GMj +dm=mR (2)

where fB indicates the integral over the orbiting rigid body.

As is frequently done in astronautical calculations, algebraic manipulation followed

by an approximation and subsequent Taylor series expansion simplify matters significantly.

Algebraic manipulatioR of the denominator of the integrand in Equation 2 yields
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Figure 5. A rigid body orbiting a massive central body under the influence of a gravita-
tional field.

1 1
I -+ r13[-- 12I + 21. --+ Irl'1-2

IR~~r13  =R tI22 + IR421
1

(3)

Now we assume Ir- << 141, neglect terms including IrF2/ItI2, and apply a Taylor series

expansion, (1 + x)=" = 1 - nz, to obtain

IRV [1 - 3  "] (4)I -+ r13 I~i- lft12J

Substituting this expression into Equation 2 we get

GM k 3 dm (5)
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and
f ~ GMI t . GMf (I+ it)(31-ri. ()

As has been done for centuries, an approximation is then made by neglecting higher order

terms and retaining only the first nonzero term. After acknowledging that the integral of

SF dm over the body vanishes we then obtain

GMm-
JR13 R(7)

and finally

+ GMm- (8)

The same result may also be obtained if the orbiting body is spherically symmetrical, or

originally defined as a point mass.

A similar development of the accompanying moment equation and an examination

of the balance of angular momentum for a circular orbit yield the familiar gravity-gradient

concept: by aligning two principal axes with the orbit normal and the radius vector to the

central body, equilibrium is obtained. Thus there are 24 possible equilibrium configurations

of a gravity-gradient body in a circular orbit - 3 axes to align with the radius vector times

2 directions per axis times 4 axes to align with the orbit normal (46), (17). Not all 24

of these are stable of course, as is shown in (46:148), (19), and (13:294-307). Similar

developments of the gravity-gradient tensor can be found in (45:128), while an expression

for total gravity gradient load as a function of mass, length, angular velocity and vertical

displacement angle is located in (31). An expression for gravity-gradient torque is also

given in (6:293). Development of the gravity-gradient geopotential and a discussion of

harmonics are provided in (20:430-438).

The operational significance of this gravity-gradient finding has been described in

numerous works such as (28), (10), (11), (23), and (6). Several satellites have incorporated

this type of passive stabilization, namely, the Transit-SA, GGTS (Gravity Gradient Test

Satellite), DODGE (Department of Defense Gravity Experiment), GEOS (Geodetic Earth
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Orbiting Satellite), RAE-2 (Radio Astronomy Explorer), NRL 164, Salyut 6, and LDEF

(Long Duration Exposure Facility) (45:787), (5), (13:327,334,336,339,341).

3.3 A Gravity-Gradient Alternative

The premise of this investigation is almost exclusively based on the results of (42).

This section contains a brief overview of the dynamical equations of interest. The reader

is referred to (40), (41), and (42) for a detailed account of the theoretical development of

the relevant equations of equilibrium discussed here.

As an alternative formulation to Equation 8, consider again the motion of a rigid body

" under the influence of a central inverse-square gravitational force due to a massive body

B.O. Because the massive body is assumed to be stationary, a restricted two-body approach

is applicable. An inertial reference frame is located at the origin 0, the mass center of

the stationary massive body. As shown in Figure 6, with C designated as the mass center

of the rigid body in motion, F* denotes the vector from 0 to C in the inertial frame and

45" is the vector from C to an arbitrary point in the rigid body in the body frame. B is

the transformation matrix from the body frame to the inertial frame. The mass particle

associated with the arbitrary point will be denoted by dm(45-).

It is easily seen that the linear momentum and angular momentum of B about 0,

expressed in the inertial frame are

L" 1(r + B4')dm(4) - mr (9)

and

+(f + B dt-(P + B *)dm(Q4) (10)

= M +(11)

where
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Figure 6. A rigid body in a central gravitational field.

m = mass of the moving rigid body

linear momentum

W = angular momentum

Cr - instantaneous angular velocity in the body frame

I* = the moment of inertia matrix of 8* in the body frame

and the dot indicates a derivative with respect to time while the superscript denotes a

quantity with dimension (for reasons which will soon be apparent). The moment of inertia

matrix P is written as

r= L. ' Tdm(4') (12)

where Q" indicates the skew-symmetric matrix

0 -Q; Q;
Q .; 0 -Q 1 (13)

Q; -Q; Q; 0
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The primary body is assumed to be spherically symmetric and the resulting potential

field produced by 8. is

V= J GM dm(€•') (14)

where M is the mass of B.. Assuming that no external forces are acting on the two-body

system, the resultant force on 8, with V = VV, is

f GM(P + B45)d .)=(5

This result arises since balance of linear momentum implies that the sum of forces is equal

to the time rate of chang'e of linear momentum. Note that the final force expression in

Equation 7 is different from the one just developed in Equation 15. Multiplying this force

term by a moment arm to obtain a torque, assuming there are no external couples acting

on B, yields

-M=-.(P + +m') x (16)

which then implies, through balance of angular momentum,

"=0 (17)

Now the substitution I f" = I " is made, with It* denoting the instantaneous body

angular momentum of 8'. Furthermore, the equations are now expressed in the body

frame through the following vector body variables:

A* BTT" " BT (18)
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The equations of equilibrium may now be written as

n = n'xI-In'+ .G X* i . ,qx (19)

v= x r-In" +- (20)m

= x 1 1 -~ GM(A + Q-) dm(Q*) (21)
0. = "X r-In" - Joe GMA" + Q.).3

S= BI*-'n• (22)

The system is then nondimensionalized with mass, length, and time scales

m = T =(G ) (23)

and nondimensional variables

A * = ' A= t (24)A=IT ImLT-T mlaT-1

By converting the rigid body B* into a nondimensional body B, the following definitions

arise from the dimensional mass cufferential din,

Q.
Q = T* (25)

1
dv(Q) = -dm(Q*) (26)in

B dm(Q*)= 1 (27)

where the nondimensional moment of inertia of B is defined as

I = - (28)
tr(PO)

and tr(I) = 1. The dynamic equations can now be expressed with the nondimensional

variables as
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[I = I xIn- +j- d$ Q) (29)

A' = AxI--I+U (30)

X IIn (Q) (31)

B' - BI-111 (32)

with the prime denoting a derivative with respect to the nondimensional time t. Since

Equations 29-31 do not include the attitude B, they are decoupled from Equation 32.

Also, since the states of interest in this investigation are those of relative equilibria, where

the rigid body 8* spins steadily about 0 while the center of mass C remains in a circular

orbit, Equations 29-31 may be set equal to zero. Therefore, the reduced equations of

equilibrium are

II x I-In+ [(A x Q) dv(Q) = 6(33)is IA + Q13"
AxI-'l+i = 6 (34)

SX I-'In- I+Q a dv(Q) = 6 (35)

Through a series of manipulations involving Hamiltonians, Casimir functions, and

variational methods, the dynamical equations are then reduced to

(I+ iT)n = 01 (36)

fiTfi-, x + 3 dv(Q) (37)

-jlnlj c (38)
2

where # is a lagrange multiplier with a value of -RIA 2 and c is a constant from variational

principles (42).

These are the generalized equations of equilibrium considered in this report. Of

particular significance is the fact that the gravitational potential term in these equations

was not approximated and remains exact. The use of the exact model is the key difference

between this approach and the gravity-gradient approach developed earlier.
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Figure 7. A rigid body satellite modelled as a molecule.

As in (42), the model used to discover and demonstrate these non-great circle orbits

consists of six mass particles connected by three rigid rods whose mass is considered negli-

gible. Two of the point masses lie at opposite ends of each of the three principal axes. The

three rods form an orthonormal body frame and coincide with the three principal axes.

The molecule model is shown in Figure 7. Transforming the integral in equation 37 to a

summation yields the following model-specific equations:

IflI2A._(flA)fl- A mi(A+Qi) = 0 (39)

Ifl + 1,\12 -fl -fln = 0 (40)
1If12 c = 0 (41)

where A is a parameter introduced to minimize numerical ill-conditioning. The value of

A was chosen to be 0.041,\15. A complete description of the methodology used to arrive

at this value is given in (42). The preceding equations serve as the departure point from

which the remaining analysis proceeds.
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IV. Methodology

4.1 Model Description

As seen in Figure 7, the model used in this investigation consists of 6 point masses

attached to the ends of 3 mutually perpendicular massless rods. The exact configuration

of masses and rod lengths was chosen to maximize the effect of higher order terms, ac-

complished by specifying moments of inertia dose to each other and insuring the model is

highly asymmetric. As described in (42), the masses and moments of inertia were chosen

as follows:

m, = 0.330066 m2 = 0.00330033

m3 = 0.330033 m4 = 0.00330033

ms = 0.33 m6 = 0.00330034

I, = 0.3332 I2 = 0.3335 I3 = 0.3333 (42)

These choices satisfy the constraints imposed by the nondimensionalization:

mim=1 m4= 0.5 (43)

where the second constraint arises from tr(I) = 1.

In order to analyze numerically the equations of motion on a computer, equations

39-41 were written in a form which could be readily converted to Fortran code. Similarly,

the Jacobian, f'(\, fl, /), of Equations 39-41 was required to perform the continuation

technique utilized in obtaining relative equilibria. The Fortran representation of both the

function f and the Jacobian f' are provided in Appendix A.

The dynamic equations were coded and validated in double precision (REAL*8)

on a Sun SparcStation. Validation included a comparison of the values of f(-, fl, 3) and

f'(., fl, 3) obtained using the code in Appendix A and those obtained by using the program

developed for (42). The function code was then incorporated into an AUTO subroutine

and tested for proper integration within the software.
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4.2 Continuation Method

Relative equilibria were found by solving the system f(X, fl, /) = 0 using a Newton-

Raphson method. The method will be introduced here first in scalar form. As described

in (26), (29), (2:153), and (7), the Newton-Raphson method may be derived from a Taylor

series expansion, which can be represented as

f"(C),
f(X,+ 1 ) = f(X,) + ,f'(x,)(X,+, - X,) + --- (X,+ _ X,,)2  (44)

where C is somewhere in the interval between x, and x,+i. An approximation may be made

by truncating Equation 44 after the first derivative term:

i+l) f(x,) + f'(x,)(X,+ 1 - X,) (45)

Since we are trying to solve for f(x) = 0, f(x 1i+) would be equal to zero at the intersection

with the x axis. This observation yields

0 ",, f(.,) + f'(xi)(Xi+i - x,) (46)

which can then be solved for xi+1 as

= - f(XA ) (47)
f'(xi)

The exact method used in this study follows a similar development, although the

vector form is slightly different than the scalar form described above. Beginning with an

initial known solution f(u., no) = 0, where u indicates the states and t7 is a parameter, a

new solution f(u, 77) is desired. First, an Euler step is taken where 7i 7 / + A71. We now

seek

f(uo + Au, + A77) = 0 (48)

Using a multi-variable form of the Taylor series expansion we see that
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0 = A(u. + Au, q. + A 7 )

= f(u., 'i.) f f.(u°, in°)Au + f,(u., q,)A•÷+ higher order terms (49)

where f. is the matrix of partial derivatives of f with respect to u, also known as the

Jacobian, J, and fj is the matrix of partial derivatives of f with respect to q. Setting the

initial solution equal to zero and solving for Au yields

Au = J-1 (u°, o)f, (u., ie),A1 (50)

which in turn gives a first approximation for a new value of u

u, = U° - J•'(uo,no), 1 (u., n.)A?7 (51)

Now, a Newton step is taken to improve upon the most recent value of u. Keeping

the same value of q, we now desire f(u%, + Au, 17) = 0. As before,

f(u., 17) + J(u., r7)Au + higher order terms = 0 (52)

and

Au = -J-(U(",f)f(u TI) (53)

which produces a better estimate of u in the form of

Un+I = un - JI 1 (U.,v )f(u., 7) (54)

Proceeding in this manner allows one to vary the parameter, q/, and obtain successive

solutions to the original function f. Using the notation of the particular dynamical system

examined in this study, branches of equilibrium points could be determined by starting

with an initial solution for f(A, n,f/, c) and incrementing the parameter, c. The process

of estimating and improving successive values of a state vector may be referred to as

pre-conditioning. The path following method described here and other methods of pre-

conditioning are explained in further detail in (44).
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4.3 Utilizing AUTO86

A continuation software package called AUTO86 (4), written by Eusebius Doedel, was

used to trace solution branches in this study. AUTO conta*ns algorithms capable of solving

a system of algebraic equations f(u, r) = 0, where u is a set of states and 17 denotes one or

more variable parameters. The software is also capable of detecting algebraic bifurcation

points and limit or turning points along a solution branch. The reader is referred to (35)

for an explanation of bifurcation and limit points.

An initial solution for a particular value of the parameter, 17, is used as input for

AUTO to begin its continuation routine. From the starting point, the parameter is varied

in a stepwise fashion and a new solution is traced using a pseudo-arclength continuation

technique (4). User-supplied subroutines are also required to calculate the function f(u, qi),

the Jacobian f'(u, v7), and to initialize certain program constants.

From the equations

A(•, nj) = 0 (55)

0=l(U - u_,)TjI + 0.1(n, _ %_,)Tý,_, _ As = 0 (56)

where As is the stepsize along the branch, the next solution is computed. 0u and 0, are

preassigned constants used to indicate scaling differences between u and 7/. The stepsize

may be fixed or adaptive. For an adaptive stepsize in which the Newton iteration routine

fails to converge, the stepsize is halved. For an adaptive stepsize in which the Newton

iteration routine converges rapidly, the stepsize is increased. However, the stepsize is not

permitted to proceed beyond a user-selected minimum and maximum. Convergence criteria

are also selected by the user. Convergence is reached if the Newton increments satisfy

1I-Il < C" and 116ullt < fu (57)
1 + Ib711 I + H~ull.

where c. and ,u are selected by the user (4).
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4.4 Accuracy Testing

Some of the AUTO subroutines were modified and others were added to explicitly

establish the accuracy of a computed equilibrium solution. As described in (42), (25), and

(26), the Kantorovich theorem may be used to measure the error for a solution and serve as

a criterion for convergence. Consequently, additional calculations were made to determine

the necessary coefficients for the Kantorovich theorem. The following constraints were

used in accepting an AUTO-derived equilibrium point:

1
aa-Y <_ and (1 < f (58)

where

a = 2nAI

n = number of equations = 7
n

Pmin

Prain = minimum eigenvalue of , f( , 3)

-/ = 16ul 1. = max (6u,,i = 1,2,...7)

and c is a user-specified error bound. If these constraints are satisfied, the order of con-

vergence is guaranteed to be at least quadratic (25).

Insufficient accuracy was obtained using the Sun workstation, therefore the code

was transferred to the Ohio Supercomputer Cray where double precision accuracy to 29

digits was possible (29). Even after this was accomplished, accuracy still did not appear

to correlate with the results achieved in (42). Thus, a gaussian elimination subroutine in

AUTO was replaced with a singular value decomposition (SVD) subroutine obtained in

(27). The SVD routine was thought to be a more robust algorithm well-suited for such an

ill-conditioned problem.

4.5 Procedure

Significant importance was given to reproducing Table 2 of (42). Once those results

could be duplicated and verified, continued analysis of the anomalous behavior at certain
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points of the equilibrium branch could begin. In the interest of clarity, Table 2 of (42)

is shown here as Table 1 where the solution numbers have been added to assist in iden-

tification. The table is segmented according to the three presumed equilibrium branches

represented.

Table 1. Relative Equilibria Illustrating Large Orientation Drifts (42)

IlSolution I IAI I 1(A) I 0(A)I Jlrl (.0) 1 0(a)
1 500 46.86111-17.4627 1001-54.7456-32.6009
2 1 760 47.8276 1 -17.8208 152 -54.7761 -34.1683
3 . 1000 48.7091 -18.1277 200 -54.8384 -35.5845
44 3000 55.3232 -17.2751 600 -20.2429 38.7129
5 6000 65.6627 -19.5986 1200 -15.6572 22.9702
6 8000 71.0045 -22.9513 1600 -11.4520 17.2236
7 9000 73.0742 -25.3278 1800 -9.5049 15.2639

8 12000 78.0382 22.8848 2400 -7.5808 -10.2578
9 15000 81.2009 18.9175 3000 -6.4284 -6.8820

10 20000 84.1137 13.7814 4000 -4.9693 -3.7331
11 30000 86.5362 8.1721 6000 -3.2604 -1.4159
12 40000 87.5514 5.6183 8000 -2.3792 -0.7051

The numerical analysis began by converting the data in Table 1 to cartesian coor-

dinates and using a specific solution, or solution number, as the initial starting point for

AUTO. In particular, efforts were made to trace equilibrium branches which encompassed

data from Solutions 1 to 4, Solutions 4 to 1, Solutions 3 to 8, Solutions 8 to 3, Solutions 8

to 12, and Solutions 12 to 8. Distinction is made between solutions with increasing versus

decreasing A since this method was intended to locate the bifurcation points implied by

discontinuities found between Solutions 3 and 4 and Solutions 7 and 8.

Certain variables in the AUTO software were extremely sensitive and required ad-

justment for each initial solution in order to produce an equilibrium branch. Consequently,

several hundred runs using a trial and error process were required to obtain results resem-

bling valid data.

Those equilibrium states that were obtained were converted to spherical coordinates:

A = (r cos 4, cos 9, r cos 4, sin 8, r sin 4) for comparison to the results found in (42), and to
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Figure 8. Spherical Coordinate System.

aid in graphical representation. The spherical coordinate system used is provided in Figure

8.
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V. Res it,

5. 1 Introduction

Efforts to duplicate Table I met with partial success. In general, it appears as though

the results of (42) can be validated, but not with the ease expected from using the AUTO

software package. The intent was to perform a complete turning point and bifurcation

analysis using AUTO, particularly in the regions where Table I indicated discontinuities.

A few bifurcation points were detected but certain convergence tests were not met and the

data was deemed invalid. The data obtained thus far indicates that the solutions in Table I

are in fact equilibrium solutions, but the continuous branches suggested by (42) could only

be reproduced by using the same program employed in (42). Preliminary results implied

the existence of not three, but at least twelve branches corresponding to each solution of

Table 1; however, this outcome was attributed to numerical instabilities present in the

utilization of AUTO for this particular dynamical system. All results, including those

considered defective, were obtained at significant computational expense, possibly due to

these instabilities. Specific results are described in the following section.

5.2 Discussion of Results

As stated earlier, a primary objective of this study was the reproduction of selected

results from (42), shown in Table 1. Figure 9 is a graphical representation of Table I

with missing data supplied by interpolation and represented by dashed and dotted (---)

lines. Figure 10 depicts the results obtained from several versions of code and numerous

program runs. Throughout the figures in this section, data from Table 1 is also included

for comparison purposes. Furthermore, of the six major equilibrium solution components,

A, 0(A), 0(\), fl, 0(0), and (fl), only two, 4(fl) and \, were chosen to graphically

represent these results since a plot of di(fl) most clearly indicates the existence of three

distinct equilibrium branches.

As can be inferred from Figure 10, only a partial mapping of the complete phase space

was accomplished. However, AUTO was able to converge on the initial starting solutions

obtained from Table 1, but quickly diverged from the expected solutions. Many equilibrium
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Figure 9. Interpolated Data from Table 1.
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Figure 10. The results from AUTO are depicted as a thick line of connected dots while
the interpolated results from Table I are displayed by asterisks and dash-dot
lines. Additional AUTO results are found dose to the Table 1 duster located
between -30 and -40 degrees, but are not visible using this scale.
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solutions were found which cannot be seen in Figure 10 due to the chosen scale. These are

explored in later figures. Additionally, an equilibrium branch not obtained in (42) appears

to exist between 0(fl) values of -20* and -30". The additional branch was obtained when

NEWT failed to converge on a nearby solution. NEWT is the program originally used

in (42) to iterate on an initial state using Equations 39-41 until convergence on a nearby

solution occurs. An AUTO run starting from Solution 4 terminated prematurely. The

final solution obtained from this run was used as an initial state in NEWT, which then

converged on a very different solution. It is this state which was used as a starting solution

for the results found between -20* and -30*. Section 5.5 elaborates.

The following presentation of results expands upon Figure 10 by dividing the region

into five ranges corresponding to areas of interest in Table 1. Range 1 includes equilibria

found with \ values between 500 and 1000, corresponding to Solutions 1 and 3. Similarly,

the remaining ranges are allotted according to Table 2.

Table 2. Definition of ranges used in displaying results.

_Range Min A value Max A value Starting Solution Ending Solution

1 500 1000 1 3
2 1000 3000 3 4
3 3000 9000 4 7
4 9000 12000 7 8
5 12000 40000 8 12

Figure 11 shows the equilibria obtained with Solutions 1, 2, and 3. Figure 12 shows

an enlargement of the equilibria obtained with an initial starting solution from Solution

1. The solutions near -32.65° were obtained after AUTO's restart option did not function.

The last available solution was then iterated upon in NEWT and the new starting solution

it produced was used for an additional AUTO run. It should be noted that although the

AUTO results appear to produce a constant 0(fl), the variable does decrease as expected,

although not at the rate implied by interpolated Table 1 results. AUTO output with

Solution 3 as the starting solution is shown in Figure 13.

Results from the end of Range 2 are shown in Figure 14. The starting solution for

this data was Solution 4. In an effort to explore the discontinuity present in the data,
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Figure 11. AUTO results in Range 1 are depicted by dots while interpolated data from
Table 1 is shown by a dash-dot line.
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Figure 12. Enlarged AUTO results in Rag 1 are depicted by dots while interpolated

data from Table I is shown by a dash-dot line.
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Figure 13. AUTO results in Range 2 are depicted by dots while interpolated data from
Table 1 is shown by a dash-dot line.
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each solution obtained from this run was iterated upon in NEWT, thereby arriving at a

NEWT-refined solution from each AUTO solution. The results of the refinement process

are shown in Figure 15. The NEWT data has been partially filtered to eliminate spurious

results attributed to the lack of significant digits available on a Sun workstation. As would

be expected, the solutions are nearly identical. However, it is interesting that the slope of

the NEWT data is of higher magnitude than the AUTO data.

Figure 16 depicts the AUTO solutions shown in Figure 14 and those obtained from

a NEWT starting solution. As mentioned above, after an unsuccessful restart attempt the

last available AUTO solution, with Solution 4 as the initial state, was used in NEWT to

arrive at a very different solution. Executing AUTO with this starting solution yielded the

results shown in Figure 16. Figure 17 is an enlarged view of the potential new branch(es).

Although Figure 17 depicts four potential branches, the discontinuities are assumed to be

a result of numerical instabilities identical to those which produced the results in Figure

14. Furthermore, the difference between the lower two branches and upper two branches of

Figure 17 can be attributed to the restart and NEWT-refinement process described above

and displayed in Figure 12. Consequently, the four branches in Figure 17 may represent

the potential existence of only one equilibrium branch.

The results obtained for Range 4 are depicted in Figure 18. Again, it is clear that

using AUTO for this particular dynamical system does not yield expected results. The

numerical instabilities inherent to this problem appear to cause AUTO to diverge from

the true equilibrium solutions. Again, it should be noted that the AUTO results are

not constant, they only fail to vary at the same rate as in (42). The results shown in

Figure 19 were obtained in a similar manner to those of Figure 12, with the discontinuities

produced by the restart and NEWT-refinement process described earlier. Each solution

composing the line at -10.20 was used as input for NEWT and a refined set of data was

obtained. While there were many spurious solutions, just as described with regard to Figure

15, the overwhelming majority of NEWT-refined solutions compared favorably with the

interpolated Table 1 data.

Accepting the values obtained in (42) as valid equilibrium solutions, one can see that

a number of equilibrium attitude orientations may now be possible. Figure 20 depicts
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Figure 14. Additional AUTO results in Ranges 2 and 3 are depicted by dots while inter-
polated data from Table 1 is shown by a dash-dot line.
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Figure 15. AUTO results in Ranges 2 and 3 refined by NEWT are depicted by dots while
interpolated data from Table 1 is shown by a dash-dot line.
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Figure 16. AUTO results in Range 3 are depicted by dots while interpolated data from
Table 1 is shown by a dash-dot line.
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Figure 17. Enlarged view of lower portion of Figure 16. AUTO results in Range 3 are
depicted by dots while interpolated data from Table 1 is shown by a dash-dot
line.
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Figure 19. AUTO results in Range 5 are depicted by dots while interpolated data from
Table 1 is shown by a dash-dot line. These solutions were obtained by starting
with point a, which corresponds to Solution 8. Discontinuities present at
points b and c were the result of restart difficulties and the NEWT-refinement
process.

50



a typical gravity-gradient orientation, as well as the three general attitudes indicated in

Table 1. The molecule model is not to scale, but representative of the asymmetrical model

used for this study. With the center of the gravitational body located vertically down,

the three non-great circle orientations are distinctly different from the typical gravity-

gradient configuration. These equilibrium attitudes dearly indicate new possibilities for

future satellite design.

5.3 Modifications to Improve AUTO

Modifications were made to the AUTO software itself to enhance its performance

for this particular dynamical system. Since the Cray did not support a complex double

precision eigenvalue solver, AUTO subroutines were modified to take advantage of the

symmetric Jacobian in this system. The symmetric Jacobian ensured real rather than

complex eigenvalues, thus a complex double precision eigenvalue solver was unnecessary.

Numerical instabilities observed later in the study prompted the use of a singular

value decomposition (SVD) rather than gaussian elimination subroutine to solve the system

of equations. It was believed that the robust SVD method would eliminate some of the

problems addressed in Section 5.5. Although accuracy was improved, as indicated by

the Kantorovich variables in Equations 58, the SVD subroutine produced nearly identical

solutions to those obtained with the gaussian elimination subroutine.

In order to achieve results as close as possible to those found in (42), an additional

convergence test was placed in AUTO to ensure the desired accuracy of solutions. As

described in Section 4.4, in order to satisfy the Kantorovich Theorem conditions, -Y, the

maximum value of 6u, was required to be sufficiently small. While AUTO's convergence

tests, shown in Equation 57, were being satisfied and implied accurate results, frequently

the Kantorovich conditions were not met. One measure of effectiveness observed was the

norm of f, which should be a very small number since the goal of the program was to find

successive solutions to f(A, fl, /) = 0. The value of fnorm obtained with AUTO was not

as small as that achieved by using NEWT. Therefore, an additional restriction was added

to the acceptance criteria for AUTO-derived equilibrium solutions. Additional iterations

were the result if -y was not sufficiently small. As expected, processing time increased
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Figure 20. Some non-great circle orbit equilibrium orientations: a) depicts a typical
gravity-gradient attitude while b), c), and d) show attitudes representing So-
lutions 1, 7, and 8 respectively.
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and smaller values of f.,,, were obtained, although still not as small as those achieved in

NEWT.

5.4 Additional Steps Toward Efficiency and Accuracy

Given that supercomputer time is not without cost, several attempts were made

at finding methods to reduce Cray processing time. In order to ascertain if use of a

supercomputer was absolutely essential, a comparison was made between the Cray results

and the Sun SparcStation results. Unfortunately the comparison proved the Cray would

indeed be necessary to obtain any worthwhile results. Using the same initial solutions,

the values of f.,, for one iteration on the Cray and Sun respectively were 0.00001 and

50,000. Likewise, the values of avy were 0.01 and 6,424 - indicating that few, if any,

accurate solutions would be found using the Sun. The AUTO subroutines which define the

system of equations to be solved was made as efficient as possible, minimizing calculations

and reducing compiling time. The subroutine which computes the value of f(A, 11, P) may

be called over a thousand times per Euler step, thus economy of calculation is imperative.

In an effort to increase the range of solutions obtained in a given number of steps, the

variable X was considered to be the parameter rather than c. However, this approach

was abandoned since the associated Jacobian would then become asymmetrical, causing

significant problems with the eigenvalue solver as described in Section 5.3.

Furthermore, several scaling schemes were tried after expected results were not ob-

tained. It was realized late in the study that AUTO actually solves the 8 x 8 matrix formed

from Equations 55 and 56. The prior assumption was that only the 7 x 7 matrix indicated

in Equations 39-41 and 55 was analyzed in AUTO. Additionally, because the value of u(7)

or 8 is not part of AUTO's output, it was not initially obvious that the values of u(1) -

u(7) ranged significantly in magnitude. For these reasons, efforts were made to scale the 7

initial values, then the Jacobian, and finally the value of the function f(X, fl,/3). Attempts

to obtain convergence with AUTO following the scaling modifications were unsuccessful.
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5.5 Problems Encountered

The most identifiable problem was an inability to obtain solutions over a large range

in a reasonable amount of CPU time. In order to acquire solutions with sufficient accuracy

in AUTO, the stepsize had to be made so small that the computational time required to find

solutions was entirely too excessive. For example, achieving a continuation from A = 100

to 103.9 required over 15 minutes of CPU time on the Cray. Clearly, pursuing this inves-

tigative route would have been impractical. In order to fully utilize AUTO's capabilities,

further "fine-tuning" of the equilibrium equations in the subroutines is required.

Acquiring a suitable stepsize for use in AUTO also presented significant problems.

A number of variables in AUTO may be adjusted by the user to achieve varying degrees of

efficiency and accuracy: mesh sizes; initial, minimum, and maximum stepsizes; maximum

number of newton iterations; and tolerances - almost a dozen altogether. The results

were extremely sensitive to changes in these factors. Several hundred combinations of

these variables were used in a trial and error procedure throughout the course of this

study in an attempt to find an efficient method of achieving results. Many tradeoffs were

made between the variables, as decreasing a tolerance might increase the accuracy but

would also prevent initial convergence on the second solution or cause a CPU time limit

to be exceeded.

Another idiosyncrasy observed during this particular application of AUTO was dis-

covered while attempting to increase the stepsize. An effective measure of success was

obtained by comparing the parameter increase in two runs of the same number of steps.

During this process it was noted that different results were achieved depending on how

often the data was printed to the screen. The value of the tenth calculated solution ob-

tained by executing 20 steps and printing each one was greater than the value of the tenth

calculated solution obtained by executing 20 steps and printing every other solution. The

source of this discrepancy was never determined.

Several other puzzling issues arose while employing AUTO. Although a positive step-

size was supposed to cause an increase in the parameter varied by AUTO, the reverse was

true for this system of equations. Mathematically this appears impossible, but the intrica-
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cies of this unique system of equations combined with AUTO's algorithms appear to have

caused this anomaly. Additionally, although AUTO has the capability to restart using

an initial value obtained from any portion of a previously obtained equilibrium branch, in

this case the feature was successful only sporadically. This presented a significant challenge

since the numerical instabilities in the problem caused program execution to terminate pre-

maturely numerous times due to computer processing time-limit violations. The numerical

instabilities themselves may also be the cause of the restart problem. Without a functioning

restart capability, an alternative avenue for continuing the branch was required.

Possible causes for the restart problem were analyzed. It was speculated that the

initial solution provided to AUTO was not of sufficient accuracy to create a valid equilib-

rium branch with which the restart option would work. Consequently, the conversion of

initial states from Table 1 was recalculated in double precision on the Cray and also refined

using NEWT, once it was apparent that using double precision did not solve the problem.

This technique was moderately successful in achieving better results. However, the restart

problem persisted and the refinement process was extended to include the last equilibrium

solution determined by AUTO, as well as the initial solution. The presumption was that

AUTO had strayed too far from the actual equilibrium branch and was unable to converge

on a subsequent solution. Occasionally the refinement process worked, but often NEWT

was unable to converge on a nearby solution - the program either failed completely or

provided a solution very different from the initial equilibrium solution. Steps were then

taken to retain a certain number of AUTO solutions in double precision (29 significant dig-

its) as possible restart values. AUTO, as written, only retains solutions with 10 significant

digits for use in subsequent restarts. Unfortunately, this method was also only occasionally

effective. Another possible cause for the restart problem is that the states were extremely

close to one another and the minuscule variation in those states indicated a bifurcation

point to AUTO, preventing a successful restart. As mentioned earlier, a likely explanation

for the restart problem concerns the numerical instabilities associated with these equilib-

rium equations and the large number of significant digits required. The most apparent

solution to this problem, keeping these results independent of those of NEWT and (42),
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would involve program execution for hundreds of thousands of steps and require the use

of batch files. Due to limited computer time, this approach was regarded as unwise.
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VI. Concluiions

6.1 Summary

Selected results from (42) were verified, thereby confirming the existence of non-great

circle relative equilibria for a rigid body travelling in a central gravitational field. Solutions

were obtained utilizing AUTO86, a continuation/bifurcation software package. Anticipated

bifurcation points and limit points were not found, presumably due to numerical sensaitiv-

ity and instabilities present when employing AUTO to analyze this particular dynamical

system. Using AUTO and NEWT, a similar program implemented in (42), values and

trends of equilibrium solutions were nearly identical to those obtained in (42). Extensive

execution of the AUTO program and the current subroutines assolated with this system

could possibly duplicate and elaborate upon the complete results of (42), however this

was not attempted due to prohibitive computational processing time. It is believed that

modification of the current subroutines may lead to a more efficient approach and thus

more definitive results.

6.2 Operational Significance

The utilization of relative equilibria in non-great circle orbits holds significant po-

tential for both current and future satellites. Current spacecraft are subject to attitude

control restrictions based on the classic gravity-gradient model. Greater natural attitude

stability for those satellites with active stabilization systems occupying non-great circle ori-

entations can increase pointing stability and accuracy. These satellites would require less

artificial or active attitude control and reduce attitude perturbations inherent in artificial

means (15). Missions might be expanded without suffering a significant loss in pointing

accuracy. Satellites employing a mass expulsion stabilization system could achieve and sus-

tain additional and more complex attitudes naturally, thus reducing propellant required

for attitude control and increasing the spacecraft's operational lifetime. Small space test

spacecraft with limited lifetimes of days or months might profit considerably, since these

types of satellites would not likely have complex active stabilization systems onboard.

They might rely instead on an expanded range of stable attitudes caused by gravitational
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torques. A three-aaxis-stabilized spacecraft may have been designed for one set of equilib-

rium points but may now be modified to operate in a new range of equilibrium points.

More importantly, prior knowledge and incorporation of the additional range of stable at-

titudes would aid engineers in designing satellites with enhanced performance. Reduced

station-keeping propellant, greater maneuverability, and longer lifetimes could be realized.

Throughout the design phase, new attitudes and configurations could be considered in

planning experiments without sacrificing payload requirements.

The missions which might employ non-great circle relative equilibria range from

astronomy, sp-xe test experiments, and space-based radar, io remote sensing, surveil-

lance, and reconnaissance. Non-great circle relative equilibria could be useful for stellar

mapping in the infrared and visible wavelengths. The instrument could be placed in a

sun-synchronous orbit with its major axis pointed away from the sun and the natural

gravitational torque could be used for passive attitude stabilization (16). For example,

although the 11,400-kg Hubble Space Telescope is in a 28.45*-inclination, 610-km orbit

as a result of shuttle payload and launch constraints, a more ideal orbit would have been

sun-synchronous (37), (34), (3), (16). The current orbit allows stellar observations for

only a portion of the orbit - that part in which the earth sufficiently obscures the sun's

rays - considerably decreasing useful observation time. A sun-synchronous orbit utilizing

these new relative equilibria for attitude stabilization might permit continuous coverage of

deep space. Of course, in order for a similar deep space telescope to reach this orbit, an

alternative to the shuttle would be required for launch and deployment.

Further examination of non-great circle relative equilibria could possibly explain

anomalous behavior of current gravity-gradient satellites, providing that eccentricity, geopo-

tential, thermal, and atmospheric effects have already been eliminated as potential causes.

A spacecraft exhibiting unexplained motion away from the classical gravity-gradient atti-

tude may actually be drifting toward these new equilibrium points. While it is typically

thought that classic gravity-gradient orientation subjects a spacecraft to a zero overall

gravitational torque load, perhaps residual torque exists and the vehicle is inclined to shift

toward an attitude of zero load. Proof of this concept would then necessitate modification

to Figure 4. While the figure indicates that a satellite at 25,228 km (104.4 kin) experiences
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a gravitational torque of 8.1721 x 10-i N-m if at an orientation 8.17210 from the vertical,

an orientation obtained from Solution 11 of Table 1, the satellite may actually be in a state

of relative equilibrium and thus experiencing zero net gravitational torque.

A major benefit to non-great circle relative equilibria is yaw control. As discussed in

Section 2.3. gravitational torques have little influence on motion about the vertical or yaw

axis. However, in a non-great circle orbit the off-axis directions of the radius and angular

velocity vectors prescribe a specific orientation for an asymmetric satellite, thus possibly

improving yaw control.

Unfortunately, despite the utility of non-great circle orbits, it is doubtful that any

onboard satellite computer or ground-generated command signals would be capable of

maintaining one of the relative equilibrium attitudes described in this study. A current

estimate of attitude pointing accuracy is placed at one arcsecond (16). Translated into

significant digits of attitude coordinates this would equate to six orders of magnitude -

considerably fewer than the 29 significant digits seemingly required by a supercomputer to

locate the equilibrium points. Clearly, a more accurate control system would be necessary

to take advantage of these newly-found equilibria. However, there is some consolation in

noting that at present, this represents a technological challenge rather than an obstacle

imposed by the laws of nature.

6.3 Recommendations

Undoubtedly, this subject requires further investigation. It appears that, in this

particular case, employing AUTO to trace equilibrium branches and locate bifurcation

and limit points is not an uncomplicated task. Two potential courses of action are rec-

ommended with regard to AUTO. First, a thorough investigation of the AUTO code for

identifiable sensitivities in double precision is suggested. Particular attention should be

given to insuring that all constants are defined in double precision. Closer examination of

the code in (42) may be required in order to decipher the calculations used to determine

the value of the function f(u). Subtle differences in mathematical expressions for sum may

have lead to discrepancies between the codes used in this study and in (42). Additional

examination of the use of the SVD subroutine is also suggested. Apparently, in NEWT's
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application of SVD, the small elements of the diagonal matrix W, the "small w(j)'s," are

not zeroed as is advised in (27:55-56). Further experimentation with changes in mesh pa-

rameters (NTST and NCOL) is also advised. Most importantly, a suitable scaling scheme

must be developed in order to improve program efficiency. Given finite computational

and economical resources, the scaling issue is critical. The satellite model could also be

changed to reduce the asymmetrical characteristics which magnify the numerical instabili-

ties present in the problem. Second, if the first course of action is futile, use of an alternate

continuation code is recommended.

Once the results of (42) are extensively validated, whether through AUTO or an

original program, the equations of equilibrium should be analyzed for a solid body which

more closely resembles an orbiting vehicle. One potential candidate is the NRL-164 (5).

Accomplishment of this objective would further establish potential applications to real

satellites and be a prelude to full-scale development and operational use of spacecraft

employing non-great circle relative equilibria.
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Appendix A. AUTO Subroutines

This appendix contains the mathematical expressions used in creating the AUTO

subroutines for this thesis. The associated code is also included.

The vector form of Equations 39-41 was converted into scalar form as follows:

fI = (f?' + fl2 + flQ)AI - (fIAI + %?A2 + flA 3 )fll - A sum, (59)

f2 = (fl + 2l + D1)\2 - (1l1 1\ + A21\2 + fl3al 3)f - A sum2  (60)

f = (fl2 + fl2 + fj3),\3 - (IIAI + %l2 A2 + 3A3s)fl3 - A sum2 (61)

f4= 111fl, + (A\2 + A2 + A2)fll1 (%?A f1 2+ A2 + 03A3)A1 + /3%~ (62)

15 = 2 + +f+++ )% - (,01 \1 + n)2 \2 + 131\3)A\2 +X12 (63)

16 = •% + (A + +•)%? - (fAI + 1 2A\2 + f13 3)A3 + 13% (64)

f7 = j(f 1+ f +3l)-c (65)

where

Sum1  =mi[A 1 + Q1(1)
[(,A1 + Q1(1))2 + (,\2 + QI(2))2 + (A\3 + Ql(3))2]1

+ m2[,Al + Q2(1)]
[(A1l + Q2(1)) + (A\2 + Q2(2))2 + (A3 + Q2 (3))2]1

+ ma[Al + Q3(1)]
[(A\I + Qs(1)) + (A2 + Qs(2))2 + (A\3 + Q 3 (3))2]1

+ m4•[ 1 + Q4(1)]
[(A1I + Q4(i))2 + (A2 + Q4(2))2 + (A\3 + Q 4 (3))2]I

+ +m 5[A + Q5(1)]
[(A1 , + Q(1))2 + (A,2 + Q5(2))2 + (A3\ + Q9 (3))2]4

+6[,\l + Q6(1)] (66)
+ [(A + Q6(1)) 2 + (A12 + Q6(2))2 + (A\3 + Q6(3)) 2](

sum 2  =mI[A 2 + QI(2)JSUr2 [(A1 + Q1(1)) 2 + (,A2 + Qd(2))2 + (A\3 + QI(3))2]1

m2 [A\2 + Q2(2)]
[((AI + Q2(1)) + (02 + Q2(2)) 2 + (A3 + Q2(3))214

+ m3[,\ 2 + Q3(2)]
[(A1I + Q3(1))2 + (A2 + Q3(2)) 2 + (A\3 + Q3(3))2]4

m+4[\ 2 + Q4(2))
[(A1l + Q4(1))2 + (A2 + Q4(2)) 2 + (A3 + Q4(3))2]1
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+ m,[A2 + Q.(2)]

[(AX + Q5(l)) 2 + (A2 + Q5(2)) 2 + (A3 + Qs(3))I]l
+ )2+,M6[1\2 + Q6(2)] (67)

[(AI + Q6(1)) + (A2 + Q(2))2 + (A3 + Q6(3))2(6

+1n[A3 + Q1 (3)]

+= [(A + Qi(1))2 + (A2 + Qi(2)) 2 + (A\3 + QI(3))2]1

+ mn2[,s + Q2(3)]

[(A, + Q2(1))2 + (A2 + Q2(2)) 2 + (A3 + Q2(3))21 1

+ M3[A\ + Q3(3)]
[(A, + Q3 (1))2 + (A2 + Q3(2))2 + (Ak + Q3(3))2]1

+ 2 + 4A 3 + Q4(3)]
+ [(, + Q.(1)) + (A2 + Q4(2))2 + (13 + Q4(3)) 2]1

+ m+[,\s + Q5(3)]
[(A1 + Qs(1))2 + (12 + Q5(2))2 + (A3 + Qs(3)) 2]1

+ 1))2+ M6[1\3+ Qs(3)I 68
+[(A\ + Q6())+ (A\2 + Q6(2)) 2 + (A\3 + Q6(3)) 2 ]11 (8

The Jacobian, f'(X, fl, P,), of Equations 39-41 was also required to perform the nu-

merical analysis of the equations of equilibrium. The Jacobian may be expressed as

{ (= )I _ _1 T .)l+2 - OT 0

+ i=l t, (\ + Q,)(.\ + Q,)T}

-(A-fn)l1 + 2Xn T - flAT  I + (1.12 _ #)I _ \kAr -_n

0 -n 0
(69)

where the vector, rather than component, form is used in the interest of simplicity.

The following pages contain a listing of applicable subroutines used in AUTO for this

particular dynamical system. However, the SVD subroutines are not included since they

are copyrighted in (27).
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SUBROUTINE FUIC(NDIMU,ICP,PAR, IJAC,F,DFDU,DFDP)
C -

C
C This subroutine evaluates the right hand side of the first order
C system and the derivatives with respect to (U(1),U(2))
C and with respect to the free parameters.
C
C Input parameters
C NDIM - Dimension of U and F.
C U - Vector containing U.
C PAR - Array of parameters in the differential equations.
C ICP - PAR(ICP(I)) is the initial 'free' parameter.
C PAR(ICP(2)) is a secondary 'free' parameter,
C for subsequent 2-parameter continuations.
C IJAC - a1 if the Jacobians DFDU and DFDP are to be returned,
C -0 if only F(U,PAR) is to be returned in this call.
C
C Values to be returned
C F - F(UPAR) the right hand side of the ODE.
C DFDU - The derivative (Jacobian) with respect to U.
C DFDU(ij) must be given the value of d F(i) / d U(J)
C
C DFDP - The derivative with respect to the 'free' parameters:
C DFDP(iICP(j)) = d F(i) /d PAR(ICP(j)).
C

IMPLICIT DOUBLE PRECISION (A-HO-Z)
CSGLE IMPLICIT REAL (A-H,O-Z)
C

COMMON /ERtAN/ GAMMA, ALANDA, SIGMAE, ALPHA, RHOMIN,FNORM

DOUBLE PRECISION U(NDIN),PAR(20)
DOUBLE PRECISION F(NDIM) ,DFDU(NDIM,NDIM) ,DFDP(NDIM,20)
DOUBLE PRECISION In(3,3) ,m(6) ,mag2lQ (6),lam2,num
DOUBLE PRECISION sum(3),dsdl(3,3) ,Q(6,3)
INTEGER I,J

C DATA STATEMENTS
DATA ((dsdl(ij),i=1,3),j=1,3)/9 * 0.0/
DATA ((In(i,j),j-1,3),i-1,3)/.3332,0,0,0,.3335,0,0,0,.3333/
DATA ((Q(ij),j=1,3),i=1,6)/18,0.0/
DATA (m(i), i-1,6)/0.330066d+0, .00330033d+0,O .330033d+0,

+0.00330033d+0,0.33d+.O0.00330034d+O/
c

Q(1 , 1) - 7.0731919616600413122865203958d-2
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Q(2,1) a -7.0738992101313602961134447941d+0
Q(3,2) a 7.067531428971487386359T724646d-2
Q (4,2) - -7.06753142897 148382010907039684.0
Q(5 3) m 7 .072489203617886l867019982994-2
Q (6,3) = -7. 0717605979820976682255668867d.0

C********* Useful quantities ********

=2 m u(4)**2*u(5)**2+u(6)**2
oudlam - u(4)*u(1)+u(5)*u(2)+u(6)*u(3)
lau2au(1)**2 + u(2)**2 + u(3)**2
AO0.04*(uqrt(1a32))**5

C********** Calculating the sun****

do 10 J-1,3

do 20 1-1,6
num-U(i)*(u(J)+Q(i~j))
mag2lQ(i)u(u(1).Q(i.1))**24(u(2)*Q(i,2))**2 +

(u(3)*Q(i.3))**2

den-uqrt (ua2lQ(i)**3)
muji)suuu(j ).num/den

20 continue
10 continue

C*******e*** Calculating F**************

do 30 Jv1,3
F(j )-mo2*u(j )-oudlam*u(J.3)-A*auu(j)
F(j+3)C(In(j ,1)*u(4))e(In(J ,2)*u(5)).(In(j ,3)*u(6))*

(lam2*u(J+3)) -(oudlau*u(j))4(u(7)*u(j43))
30 continue

F(7)..5*om2-pa~r(I)
fnormuF(1)**2*F(2)**2+F(3)**24-F(4)**2*F(5)**2+F(6)**2

fnormssqrtCf norm)
C write(6.*) 'frnoru*',fnoru

IF(IJAC.EQ.0)RETURN
C
C ***Calculating the partials of suuza with respect to

C lambda(1,2,3)
C

DO 25 1-1,3
dadl(i,i)ndsdl(i,i) + (u(j)*(mag2lQ(j))**(-1.5)) -3.0*
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* m(j) *(uaV2Q(J))**(-2.5)e(u(i)4q(j.i))**2
25 Continue

dsdl(1.2)-dsdl(1,2) -3.0*(m(j)*(uaa21Q(J))**(-2.5)) *

* (u(I).Q(J .1))*(u(2)+Q(J .2))
dsdl(l.3)udsdl(1,3) -3.0*(n(j)*(inag2lQ(J))**(-2.5)) *

* (u(1)+Q(J.1))*(u(3)+Q(J.3))
dsdl(2,3)udsdl(2,3) -3.Oe(a(j)*(.ag2lQ(J))**(-2.5)) *

* (u(2)4Q(J ,2))*(u(3)*Q(J .3))
26 Continue

dsdl(2,1)udsd1(1,2)
dndl(3. 1)ndsdl(1 .3)
dsdi (3 ,2)ndsdl (2,3)

C Derivatives of FO) with respect to U()
C

DFDU(1,1)s uC5)**2*u(6)**2 - Aedsd1(1,1)
DFDU(1,2)- -u(4)*u(5) - A*dsdl(1,2)
DFDU(1,3)- -u(4)*u(6) - A*dsd~l(1,3)
DFDU(I.4)- -uC5)*u(2) - u(6)"'u(3)
DFDU(1,6)u 2.O*u(5)*u(1) - u(4)e'u(2)
DFDU(1.6)- 2.O*u(6)*u(1) - u(4)*u(3)
DFDU(i.7)s 0.0
DFDU(2,1)u -uC4)*u(5)-A*dudl.(2,1)
DFDU(2,2)- u(4)**2 + u(6)**2 - A*dsdl(2,2)
DFDU(2,3)- -u(S)eu(6) - A*dadl(2,3)
DFDUi(2,4)- 2.0*u(4)*u(2) - u(S)*u(l)
DFDU(2,S)- -u(4)*u(1) - u(6)*u(3)

DFDU(2,6)- 2.0*u(6)*u(2) - u(S)*u(3)
DFDU(2,7). 0.0
DFDU(3,1)m -u(4)*u(6) - A*dsdl(3,1)
DFDU(3,2)in -u(S)su(6) - Adsddl(3,2)
DFDUC3,3)- u(4)**2 + u(S)**2 - A*dsdlC3,3)
DFDU(3,4)n 2*u(4)*u(3) - u(6)*u(I)
DFDU(3,5)- 2*u(5)*u(3) - u(6)*u(2)
DFDU(3,6)- -u(4)*u(i) - u(5)*u(2)
DFDU(3.7)- 0.0
DFDU(4,1)u DFDU(i,4)
DFDU(4.2)- DFDU(2,4)
DFDU(4 ,3)- DFDUC3 .4)
DFDU(4,4)n In(1,1)*u(2)**2 + u(3)**2 + u(7)
DFDU(4,5)- In(i,2)-u(2)*u(1)
DFDU(4,6)- In(1,3)-u(3)*u(1)
DFDU(4,7)U u(4)
DFDU(5, 1)- DFDU(1 ,5)
DFDU(5,2)- DFDU(2,S)
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DFDU(53)0 DFD(3,8)
DFDU(5,4)- In(2,1)-u(1)*u(2)
DFDU(5.6)a In(2,2)+u(1)**2+u(3)**2 + u(7)
DFU(5,6). In(2,3)-u(3)*u(2)
DFDU(5,7)- u(S)
DFDU(6,1)a DFDU(1,6)
DFDU(6,2)- DFDU(2,6)
DnFU(6,3), DFDU(3,6)
DFDU(6,4)- In(3,1)-u(1)*u(3)
DFDU(6,65), In(3,2)-u(2)*u(3)
DFDU(6,6)= In(3,3)+u(1)**2+u(2)**2 + u(7)
DFDU(6,7)- u(6)

DFDU(7,1)- 0.0
DFDU(7,2)- 0.0
DFDU(7,3)- 0.0
DFDU(7,4)n u(4)
DFDU(7,S)u u(S)
DFDU(7,6)= u(6)
DFDU(7,7)- 0.0

C
C Derivatives with respect to PAR(l).
C

DFDP (1, 1),,0.0

DFDP(2,1)O.O
DFDP(3,1)O.O
DFDP(4.1)-0.0
DFDP(S,1),.0.0

DFDP(61)=-0.0
DFDP(7,1),-1.0

C
RETURN
END

C
SUBROUT~INE STPIT(NDIN.U,UPAR)

C
C In this subroutine the steady state starting point must be defined.
C (Used when not restarting from a previously computed solution).
C The problem parameters (PAR) may be initialized here or else in INIT.
C
C NDIN - Dimension of the system of equations.
C U - Vector of dimension NDIM.
C Upon return U should contain a steady state solution

C corresponding to the values assigned to PAR.
C PAR - Array of parameters in the differential equations.
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C
C u.dat is a 6-line input data file consisting of the 3 components
C of lambda and the 3 components of omega (in cartesian coordinates)
C

IMPLICIT DOUBLE PRECISION (A-HO-Z)
CSGLE IMPLICIT REAL (A-H,O-Z)
C
C

DIMENSION U(NDIM) ,PAR(20)
OPEN (UNIT=4, FILE " 'u.dat')
DO 22 I11,6
READ (4,33) UMI)
urite(6,33) u(i)

22 CONTINUE
33 format(D36.30)

U(7)u-(u(1)**2 + u(2)**2 + u(3)**2)
par(i) -. SdO*(u(4)**2+u(5)**2+u(6)**2)
CLOSE (UNIT - 4)

44 RETURN
END

C
SUBROUTINE INIT

C
C
C In this subroutine the user should set those constants that require
C values that differ from the default values assigned in DFINIT.
C (See the main documentation for the default assigments).
C

IMPLICIT DOUBLE PRECISION (A-HO-Z)
CSGLE IMPLICIT REAL (A-HO-Z)
C

COMMON /BLBCN/ NDINIPSIRS,ILP,ICP(20) ,PAR(20)
COMMON /BLCDE/ NTST,NCOL,IAD,ISP,ISWIPLT,NBC ,NINT
COMMON /BLTHT/ THETAL(20), THETAU
COMMON /BLDLS/ DS,DSMINDSMAXIADS
COMMON /BLEPS/ EPSL(20) ,EPSU,EPSS
COMMON /BLLIM/ NMX,NUZR,RLORLI,AO,A1
COMMON /BLMAX/ NPRMXBFIIDITMI,ITNW,NWTN,JAC

C
NDIM-T
IPS-1
ILP-1
ISP,2

C
C Set the principal bifurcation parameter to be PAR(l).
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C
ICP~wl)

C
C Set the second free parameter to be PAR(2.
C (For 2-parameter continuation).
C
C ICP(2)w2

NXBF-50
ITNX-200
IID-0
IsV-i
N==0m

OPEN (UNITw6. FILE u'in.dat)

READ (6,*) IRS
READ (5,*) NTST
READ (5,*) ICOL
READ (6,*) DS,
READ (5.s) DSKII
READ (5,*) DS~kA
READ (5,s) NIZ
READ (5,*) ITUW
READ (6,*) NPR
READ (5,*) THETAU
READ (6.0) TEETALMi
READ (5,*) EPSU
READ (5,*) EPSLWl
READ (5,*) EPSS
READ (5,*) RLO
READ (5,*) RLl
READ (5,*) AO
READ (5,*) Al
READ (5,*) HXBF
READ (5,*) ITMI
READ (5,*) IID

CLOSE (UIITmS)

RETURN
END

C
FUNCTION USZfR(I INUZRPAR)

C -- - - - - -

C
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C This subroutine can be used to obtain plotting and restart data
C at certain values of free parameters.
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CSGLE IMPLICIT REAL (A-HO-Z)
C

DIMENSION PAR(20)
C
C Initially, for the steady state analysis. set NUZK-O in lilT.
C Then the functions specified below will be ignored.
C
C During the second run of this test problem, when computing the branch
C of periodic solutions, set NUZR-4 in INIT.
C In this example, output will then be written in unit 8 for the values
C of PAR0l) specified below.
C Note that PAR0l) is normally reserved. It is used by AUTO to keep
C track of the period (See main documentation).
C

GOTO(1,2,3,4)1
C

1 USZRmPAR(Il) - 11.0
C RETURN
C
2 USZRaPAR(11) - 14.0

RETURN
C

3 USZR*PAR(11) - 20.0
RETURN

4 USZRPAR(11) - 30.0
RETURN

C

END

C
SUBROUTINE CABI (U,DU)

C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

CSGLE IMPLICIT REAL (A-H,O-Z)
C
C determines the max value of DU (or dx) for Kantorovich test
C

DIMENSION DU(7), U(7)
COMMON /ERRAN/ GAMMA, ALANDA, SIGMAK, ALPHA, RHOMIN,FNORM

GA•MMAO. OdO
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DO 10 Is.17
IF(DABS(DU(I)) .GT.GMSIA) GANKAnDABS(DU(I))

10 CONTINUE
ALANDA&SQRT(U(1)**2 + U(2)**2 + U(3)**2)

c VRITE(6,*)'GANMA a ',GAMMA

END

C --- - - - - - -

SUBROUTINE CAB2 (KY)
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CSGLE IMPLICIT REAL (A-HO-z)
C
C determines rhomin, sigma, alpha for Kentorovich test
C

DIMENSION EV(7)
COMMON /ERRAN/ GAMMA, ALANDA, SIGMAE, ALPHA, RHOMINFIORM
RHOMII-1.0d20
DO 10 I=1,7
IF(ABS (REAL (EV(I))) .LT. REOMIN) RHOMIN-ABS(REAL(EV(I)))

10 CONTINUE
SIGMA! a 7.0/RBOMII
ALPHA - 2.0* 7.0* ALANDA
RETURN
END

C -- - - - - - - -

SUBROUTINE CAB3 (RDRLM *DRLM *RL, RDUM , DUMI ,UNX ,EPSL,EPSU)

C
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

CSGLE IMPLICIT REAL (A-H,O-Z)
C
C compares values with tolerances to determine convergence
C

DIMENSION RL(20), EPSL(20)
IF(RDRLM.LE.EPSL(1) .AND.RDUMX.LE.EPSU)then

write(6,*) '(DRLM - ',DABS(DRLM),')'
write(6,*) I -------------------- * ',RDRLM,' <- ',EPSL(1)
write(6,*) '1.(RL(1).' ,DABS(RL(1)),')'
writo(6,*) '(DUMI - 1, DUMI,')'
write(6,*) v'-------------------. a ,RDUNX,' <=',EPSU

vrite(6,*) '1.(UMI.',UMI,#)'

endif
RETURN
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END

C --- - - - - - -

SUBROUTINE CAB4
C

IMPLICIT DOUBLE PRECISION (A-HO-Z)
CSGLE IMPLICIT REAL (A-HlO-Z)
C
C prints kantorovich values just prior to convergence
C

COMMON /ERJLN/ GAMMA, ALANDA, SIGNAE, ALPHA, RHOKIN,FNORK
writo(6,*) 'Fnorm = ', fnorm
WRITE(6,*) 'GAMMA - ', GAMMA
WRITE (6,*) 'ALPHA*SIGMA*GARMA - ', ALPHA*SIGXAE*GAIMA
IF(ALPHA*SIGMAE*GAJUA. GE.O .6) THEN
VRITE(6,*) 'ALPHA*SIGMA*GAMMA IS OUT OF BOUNDS *********'
ENDIF
RETURN
END

C
SUBROUTINE CABS(NN,M,A,NRHSNDIMP1,X,NDIMP11,BIR,IC)
PA"AMETER (N=8)

C
C NDIMP1 = MIAA a NDIM +1 a 8 FOR cab/wang project
C NDIMP1: number of equations, N
C M1AA: first dimension of A from DIMENSION statement,M
C AA: N * N matrix of coefficients, A
C NRHS number of right hand sides
C NDIMPI: first dimension of U from DIMENSION statement,N
C DU: on exit DU contains the solution vector(s), X
C NDIMPI: first dimension of F from DIMENSION statement,N
C RHS: right hand side vector(s), B
C IR, IC: integer vectors of dimension at least N
C
C The input matrix A is overwritten.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CSGLE IMPLICIT REAL (A-H,O-Z)
C
C prepares and calls SVDCMP and SVDBKSB
C
C SVDCMP and SVDBKSB are not included in this code due to copyright laws
C
C in the remaining subroutines U does not imply U the state vector solved
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c in FUNCt•his U goe with U, V. W in using SVDCNP
c

DIMENSION A(NI) ,U(N,N) .WCN) ,V(NN) ,B(N) .X(1)

DO 20 1-1,9
DO 10 J-1,N

10 U(IJ) - A(IJ)
20 CONTINUE

CALL SVDCHP(U,N,N,N,N,V,V)
AIX-O. ODO

DO 13 J-1,N
IF(W(J).GT.WIIAX)WKAX-W(J)

13 CONTINUE

C

C ***** experiment with this value below

c wang's code does not zero the small wj's au advised in "Numerical

C Recipes in Fortran"

c

write(6,*) 'wa',(w(j),j=1,7)

WMIN=WMAX*1.OD-20
DO 14 J-1,N

IF(W(J) .LT.WMIN)g(J)w0

14 CONTINUE

CALL SVBKSB(U,W,V,N,N,N,N,B,X)

RETURN
END

C

SUBROUTINE CAB6(NTOT,LAB,U)
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

CSGLE IMPLICIT REAL (A-H,O-Z)
C

C writes u for interesting or last points to a file

C

DIMENSION U(7)
open(unit=ll ,file 'u.last.dat')

do 10 i=1,6
write(11,222) u(i)

10 continue
write(ll,*) ntot

222 format(d36.30)
close(11)
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RETURN
END

C

C

C The following subroutines are not used in this example
C

SUBROUTINE BCND(NDIM,PAR,ICP,NBC,UO,U1,FBIJAC,DBC)

RETURN
END

SUBROUTINE ICND(NDIN,PARICP ,NINT,U,UOLD,UDOTUPOLD ,FI, IJAC ,DINT)

RETURN
END

SUBROUTINE FOPT(NDIM,U,ICP,PAR, IJAC,FSDFDU,DFDP)

RETURN
END
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